Enrollment No:	Exam Seat No:
	C.U.SHAH UNIVERSITY
	Summer-2015

Subject Code: 4TE04DSM1 Course Name: B.Tech(CE,IT) Semester: IV

Subject Name: Discrete Mathematics

Date: 19/5/2015 Marks: 70 Time: 02:30 TO 05:30

Instructions:

- 1) Attempt all Questions in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

SECTION-I

Q-1 (a)	Find the least and greatest element in the POSET $\langle Z^+, D \rangle$, if they exist.		
(b)	Define: Atom and find all atoms of Boolean algebra $\langle S_{30}, D \rangle$.		
(c)	Symbolize the expression:		
	i) "If x is odd and x is perfect square then x is divisible by 3."		
	ii) "All birds can fly."		
(d)	Over the universe of animals:	[02]	
	A(x): x is a whale, $B(x)$: x is a fish, $C(x)$: x lives in water		
	Translate the following in your own words.		
	i) $(\exists x)(B(x) \land \neg A(x))$ ii) $(\forall x)(A(x) \lor C(x)) \to B(x)$		
	Let $A = \{1, 2, 3, 4, 5, 6\}$ along with partial ordered relation D such that aDb means		

Q-2 (a) "a divides b" then

- i) Find cover of each element and draw the Hasse diagram.
- ii) Find greatest element, least element, minimal element and maximal element, if they exist.
- iii) Find the greatest lower bound and least upper bound of $\{2\}$, if they exist.
- (b) Let $\langle L, \leq \rangle$ be a lattice $a, b \in L$, prove that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$. [05]

[05]

 $(a*b)'=a'\oplus b'.$

OR

(b) Show that $\Box r$ is a valid conclusion from the premises $p \rightarrow \Box q, r \rightarrow p$ and q [04] i) with truth table ii) without truth table

/	\sim	
/	19-5	
(10 0)
\mathbf{i}		
	\sim	

SECTION-II

Q-4 (a)	State Pigeonhole principle.	[01]
(b)	How many edges are there in undirected graph with 6 vertices each of degree 5?	[02]
(c)	Give an example of a monoid which is not a group. Justify your answer.	
(d)	How many 5-digit even numbers can be formed using the digits 1, 2, 3, 4, 5 once?	[02]
Q-5 (a)	State and prove Cayley's theorem on group.	[07]
(b)	Show that $\langle Z_6, +_6 \rangle$ is isomorphic to $\langle Z_7^*, \times_7 \rangle$.	[07]
	OR	
Q-5 (a)	 Answer the following: i) State and prove Lagrange's theorem on group. ii) Show that the kernel of homomorphism g: ⟨G,*⟩→⟨H,Δ⟩ is a subgroup of a group ⟨G,*⟩. 	[07]
(b)	Let $S = \{1, 2, 3\}$ and S_3 be the set of permutation on S. Find all proper subgroups of a group $\langle S_3, \diamond \rangle$ and identify that which subgroup is normal? Where \diamond represents composition of two permutations.	[07]
Q-6 (a)	Give three different representations of a tree from $(v_0(v_1(v_2)(v_3(v_4)(v_5)))(v_6(v_7(v_8))(v_9)(v_{10})))$	[07]
	Also identify root, branch nodes and leaf nodes from the tree.	
(b)	From the graph given below, answer the following:	[07]
	 Find in degree, out degree and total degree of each vertex. Find reachable set of each vertex. Find all node bases. Find all strong components. 	

5. Write the adjacency matrix from the given digraph.

Q-6 (a) Obtain binary tree equivalent to the tree given below:

(b) Answer the following:

i) Let $E = \{a, b, c, d, e\}$,

$$\underbrace{A}_{\sim} = \{(a, 0.3), (b, 0.8), (c, 0.5), (d, 0.1), (e, 0.9)\}, \\ \underbrace{B}_{\sim} = \{(a, 0.7), (b, 0.6), (c, 0.4), (d, 0.2), (e, 0.1)\}$$

Find the following:

1) $A \cup B$ 2) $A \cdot B$ 3) A + B 4) A - B

ii) State De Morgan's Laws for fuzzy subsets and prove any one.

19-5	

[07]

[07]